246 research outputs found

    Modulateurs, médiateurs et effets à court et long terme des jeux vidéos violents sur les conduites agressives

    Get PDF
    Violent video games are considered as a risk factor for violence. A fairly broad consensus today is shared among the majority of researchers. A new generation of research must now work to determine 1. if there are more at risk player profiles 2. causal mechanisms by which violent video games increase aggressive behavior. Through six studies including a cross-sectional research and five experimental research studies, we provide a new perspective on the mediators and moderators of violent video game effects on human aggression.Les jeux vidéo violents sont considérés comme un facteur favorisant les violences. Un consensus relativement large est aujourd'hui partagé par une majorité des chercheurs. Une nouvelle génération de travaux doit désormais travailler à déterminer 1. s'il existe des profils plus exposés de joueurs 2. par quels mécanismes causaux les jeux violents augmentent les conduites d'agression. A travers 6 études comprenant une recherche transversale et cinq recherches expérimentales, nous apportons un éclairage nouveau concernant les modulateurs et les médiateurs des effets des jeux vidéo violents sur l'agression humaine

    Human-Induced Geo-Hazards in the Kingdom of Saudi Arabia: Distribution, Investigation, Causes and Impacts

    Get PDF
    Different types of geological hazards are induced by human activities in the Kingdom of Saudi Arabia (KSA). These geological hazards include land subsidence and earth fissures, sinkholes, expansive soils, and flash floods. A wide variety of recent geological hazards have been reported in several areas, causing significant human and property losses. Human activities, most notably groundwater extraction, infrastructure development, and agricultural activities, have induced unstable conditions. This chapter provides an overview of the human-induced geological hazard in the KSA, mainly earth fissures and sinkhole, which represent a scarcely explored topic. This work identifies the main types of human-induced geological-hazard formations, distribution, causes, and impacts, illustrated through several case studies in the KSA

    Effects of MS-153 on chronic ethanol consumption and GLT1 modulation of glutamate levels in male alcohol-preferring rats

    Get PDF
    We have recently shown that upregulation of glutamate transporter 1 (GLT1) in the brain is associated in part with reduction in ethanol intake in alcohol-preferring (P) male rats. In this study, we investigated the effects of a synthetic compound, (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), known to activate GLT1 on ethanol consumption as well as GLT1 expression and certain signaling pathways in P rats. P rats were given 24-hour concurrent access to 15% and 30% ethanol, water and food for five weeks. On week 6, P rats received MS-153 at a dose of 50 mg/kg (i.p.) or a vehicle (i.p.) for five consecutive days. We also tested the effect of MS-153 on daily sucrose (10%) intake. Our studies revealed a significant decrease in ethanol intake at the dose of 50 mg/kg MS-153 from Day 1 through Day 14. In addition, MS-153 at dose of 50 mg/kg did not induce any significant effect on sucrose intake. Importantly, we found that MS-153 upregulated the GLT1 level in the nucleus accumbens (NAc) but not in the prefrontal cortex (PFC). In accordance, we found upregulation of nuclear NFkB-65 level in NAc in MS-153-treated group, however, IkB was downregulated in MS-153-treated group in NAc. We did not find any changes in NFkB-65 and IkB levels in PFC. Interestingly, we revealed that p-Akt was downregulated in ethanol vehicle treated groups in the NAc; this downregulation was reversed by MS-153 treatment. We did not observe any significant differences in glutamate aspartate transporter (GLAST) expression among all groups. These findings reveal MS-153 as a GLT1 modulator that may have potential as a therapeutic drug for the treatment of alcohol dependence

    A Flood Risk Management Program of Wadi Baysh Dam on the Downstream Area: An Integration of Hydrologic and Hydraulic Models, Jizan Region, KSA

    Get PDF
    For public safety, especially for people who dwell in the valley that is located downstream of a dam site, as well as the protection of economic and environmental resources, risk management programs are urgently required all over the world. Despite the high safety standards of dams because of improved engineering and excellent construction in recent times, a zero-risk guarantee is not possible, and accidents can happen, triggered by natural hazards, human actions, or just because the dam is aging. In addition to that is the impact of potential climate change, which may not have been taken into account in the original design. A flood risk management program, which is essential for protecting downstream dam areas, is required. Part of this program is to prepare an inundation map to simulate the impact of dam failure on the downstream areas. The Baysh dam has crucial importance both to protect the downstream areas against flooding, to provide drinking water to cities in the surrounding areas, and to use the excess water for irrigation of the agricultural areas located downstream of the dam. Recently, the Kingdom of Saudi Arabia (KSA) was affected by extraordinary rainstorm events causing many problems in many different areas. One of these events happened along the basin of the Baysh dam, which raised the alarm to the decision makers and to the public to take suitable action before dam failure occurs. The current study deals with a flood risk analysis of Wadi Baysh using an integration of hydrologic and hydraulic models. A detailed field investigation of the dam site and the downstream areas down to the Red Sea coast has been undertaken. Three scenarios were applied to check the dam and the reservoir functionality; the first scenario at 100-and 200-year return period rainfall events, the second scenario according to the Probable Maximum Precipitation (PMP), and the third scenario if the dam fails. Our findings indicated that the Baysh dam and reservoir at 100-and 200-year rainfall events are adequate, however, at the PMP the water will spill out from the spillway at ~8900 m3/s causing flooding to the downstream areas; thus, a well-designed channel along the downstream wadi portion up to the Red Sea coast is required. However, at dam failure, the inundation model indicated that a vast area of the section downstream of the dam will be utterly devastated, causing a significant loss of lives and destruction of urban areas and agricultural lands. Eventually, an effective warning system and flood hazard management system are imperative

    Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats

    Get PDF
    Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways

    Underlying Mechanisms of Transit-Oriented Development: A Conceptual System Dynamics Model in Qatar

    Get PDF
    Transit-Oriented Development (TOD) is an urban planning approach that facilitates the achievement of sustainable development goals from an urban planning and transportation perspective. Developed countries are moving rapidly to integrate TOD principles into the urban fabric. On the other hand, developing countries face challenges in attempting to implement TOD and introduce new transportation modes. The present research study analyzes the concept of TOD from a systematic perspective, providing an in-depth analysis of the interrelation of the three subsystems of TOD: sustainable transportation, built environment, and socio-economic development. The authors posit that the appropriate application of TOD requires not only that one evaluate the existing conditions of the urban fabric, but also that one assess the typical causality characteristics of the TOD index, as well as investigate the dynamicity of these interacting factors as they change over time. This approach should allow policymakers to better understand the interrelations among the built environment, transportation, and socio-economic aspects of TOD, ultimately enabling them to provide appropriate and focused policies. In this research study, a conceptual system dynamics model for TOD is developed, taking into consideration the needs of a sustainable built environment, a sustainable transportation system, and a sustainable economy. The main findings therefore relate causality effects among multiple variables, including transportation, urban and socio-economic subsystems. The model developed in this study was developed in the State of Qatar, a small country in the Arabian Gulf, but has broader implications as it could be implemented in other countries with conditions similar to those prevailing in Qatar.This research study was developed under the grant schemes awarded by Qatar University: Grant ID: QUCP-CENG-2021-2 (National Capacity Building Program-NCB-S1), titled: ‘Re-thinking a Framework for the Urban Regeneration and Preservation of the Transit Villages of Old Salata, QNM, Msheireb and Souq Waqif,’ along the Cultural-Heritage Doha-Metro Corridor; and Grant ID: QUST-1-CENG-2021-16, titled: ‘A Holistic Strategy for the Urban Regeneration of the Souq Waqif Neighbourhood.’ English editing, proof-reading, and article processing charge (APC) were supported by Qatar University, Grant ID: QUST-1-CENG-2021-16. This paper was subject to a Double-Blind Peer Review process. The open access (OA) funding were provided by the Qatar National Library [QNL]. The authors thank QNL for its continuous support. Finally, the authors thank the anonymous reviewers for their comments, which contributed to an improvement of this paper

    Utilizing anaerobic fungi for two-stage sugar extraction and biofuel production from lignocellulosic biomass

    Get PDF
    Lignocellulosic biomass is a vast and underutilized resource for the production of sugars and biofuels. However, the structural complexity of lignocellulosic biomass and the need for multiple pretreatment and enzymatic steps for sugar release renders this process economically challenging. Here, we report a novel approach for direct, single container, exogenous enzyme-free conversion of lignocellulosic biomass to sugars and biofuels using the anaerobic fungal isolate strain C1A. This approach utilizes simple physiological manipulations for timely inhibition and uncoupling of saccharolytic and fermentative capabilities of strain C1A, leading to the accumulation of sugar monomers (glucose and xylose) in the culture medium. The produced sugars, in addition to fungal hyphal lysate, are subsequently converted by Escherichia coli strain K011 to ethanol. Using this approach, we successfully recovered 17.0% (w/w) of alkali-pretreated corn stover (20.0% of its glucan and xylan content) as sugar monomers in the culture media. More importantly, 14.1% of pretreated corn stover (17.1% of glucan and xylan content) was recovered as ethanol at a final concentration of 28.16 mM after the addition of the ethanologenic strain K011. The high ethanol yield obtained is due to its accumulation as a minor fermentation end product by strain C1A during its initial growth phase, the complete conversion of sugars to ethanol by strain K011, and the possible conversion of unspecified substrates in the hyphal lysate of strain C1A to ethanol by strain K011. This study presents a novel, versatile, and exogenous enzyme-free strategy that utilizes a relatively unexplored group of organisms (anaerobic fungi) for direct biofuel production from lignocellulosic biomass.Peer reviewedMicrobiology and Molecular GeneticsBiosystems and Agricultural Engineerin

    Chronic Ethanol Consumption Alters Glucocorticoid Receptor Isoform Expression in Stress Neurocircuits and Mesocorticolimbic Brain Regions of Alcohol-Preferring Rats

    Get PDF
    Evidence suggests the hypothalamic-pituitary-adrenal (HPA) axis is involved in Alcohol Use Disorders (AUDs), which might be mediated by an imbalance of glucocorticoid receptor (GR), GRα and GRβ, activity. GRβ antagonizes the GRα isoform to cause glucocorticoid (GC) resistance. In the present study, we aimed to investigate the effects of chronic continuous free-choice access to ethanol on GR isoform expression in subregions of the mesocorticolimbic reward circuit. Adult male alcohol-preferring (P) rats had concurrent access to 15% and 30% ethanol solutions, with ad lib access to lab chow and water, for six weeks. Quantitative Real-time PCR (RT-PCR) analysis showed that chronic ethanol consumption reduced GRα expression in the nucleus accumbens shell (NAcsh) and hippocampus, whereas ethanol drinking reduced GRβ in the nucleus accumbens core (NAcc), prefrontal cortex (PFC), and hippocampus. An inhibitor of GRα, microRNA-124-3p (miR124-3p) was significantly higher in the NAcsh, and GC-induced gene, GILZ, as a measure of GC-responsiveness, was significantly lower. These were not changed in the NAcc. Likewise, genes associated with HPA axis activity were not significantly changed by ethanol drinking [i.e., corticotrophin-releasing hormone (Crh), adrenocorticotrophic hormone (Acth), and proopiomelanocortin (Pomc)] in these brain regions. Serum corticosterone levels were not changed by ethanol drinking. These data indicate that the expression of GRα and GRβ isoforms are differentially affected by ethanol drinking despite HPA-associated peptides remaining unchanged, at least at the time of tissue harvesting. Moreover, the results suggest that GR changes may stem from ethanol-induced GC-resistance in the NAcsh. These findings confirm a role for stress in high ethanol drinking, with GRα and GRβ implicated as targets for the treatment of AUDs
    • …
    corecore